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al zcontrol function interpolatior nuserical gric generation, and its application in
3 3 a general three-dimensional e..i:z%ic tne nuserical solution of partial di{fferential
g ~ or. ¢ode and tnelr effecta orn ..« eg.ations, are covere< in detall {n a recent tex:
3 ng an izplicit Euler algoritns are crn tne subject. Severa] surveys of the {leld
e nese results will serve to gulze =rne nave also been given," ' and three conferernce
o} ntroi functlion procedures anc proreecingy de irated toc this area have Dbeen
: spolation tecnniques in general grid putlianec. -
g ation codes. Taree configurations ani inree
gr Ly ("Dw, "C", and "H" grids) are exaz.neai. Tne cozputational grid, or mesh, working {n
The resuits indicate thnat the selection of trne conjunction with the flow solver can have a ‘s
. contrel function interpolation techniques, wnicn substant{al izpact on the aerodynamic solutlon;
affecta grid apacing, should be based on boundary therefore, it 13 the oblective of this analysis %o
curvature and spacing. The selection of tne exazine several gridding procedures and their
tnterpolation tecnnique can then be made effects on Euler approximations. Tnis study was
trangparent 3 the user of general grid generation conducted as part of the development effort of a
~nzes general three-dimensional grid code for realistic
aireraft/missi{le configurations. The purpcse of
Nozenslature tnis analysis is to demonstrate the viabilliry of
- automatic determination of the control funztion,
o - elezents of covariant metric tensor in the elliptic grid generation system, {rom the
o (m = 1,2,3; o= 1,2,3) boundary point distributions using separate
g0 - elements of contravariant metric tensor interpolation techniques for the terms arising
(@ = 4,2,3; n = 1,2,3) from spacing and local curvature. These results
r - Cartesian position vector will serve to guide the design of control function
- (r = xt + yJ « zk) procedures and interpolation techniques to be made
X502 ~ three Cartesian coordinates automatic and transparent to the user {n this code
* - tnree curvilinear coordinates (¢ = and are similarly of relevance to the design of
1,2,3) of transformed region general grid generation codes by others.
F_ ~ "Contrcl functions™ wnich serve to
v cortrcl spacing and orlentaticn of grid Grid-Generation
1ines (n = 1,2,3)
r - local radfus of curvature A general three~dimensional grid generation
s ~ diazeter code has been written which allows any nuzber of
M - freestreac Mach number blocks to be used to cover an arbi{trary three-
" - angle cf attack (degrees) dimensional region.” Any block can be linked to
o - pressure coefficient any other block, with complete continuity across
Cre ~ sonic pressure coefficient the block interfaces. The composite structure :s
" such that completely general configuraticns may be
Introduction treated, the arrangement of the subregions being
- specified by input, without modification ¢t the
ir. tne fie;: of coamputational fluid dynatics code. The code {ncludes a tnree-dizensional
WCFZL, cuarrent earch i{s almed primarily a% algebtraic generatlon systexz based on transfinite
izpreving botn t“e accuracy and efftcienc\ of the irnterpolation for the generation of an initial
nomerical teonnijuies exployed n solving fluld solution to start the iterative solution of the
f.ow, neat transfer, and combustion probiezs.’ elliptic generation systexm. This feature alsc
lzircvezents z.3t be made in both of these areas allows the code to be run as an algebraic
1f IF] s vc become a viable partner to trne wind generation systez {f desired.
mo2erddyyveic design, Numeri{cal gric
. regu.res tecnnology development and has Trnis coce uses an elliptic generation systex
as a zajor pacing itez for realilstic with astomatic evaluatlon of control funciions
tasije applicatfona, The teonnigues of froz boundary point distributions. Seve—al
procedures for geterxzining the gontrol functicns
Cospatational Aerodynazicist, “etder fro= the boundary point distribuytions are
incorporated {n the oode, and 4t was the furpsse
: Ancoapize Snaplneering, Memder ALAA cf the proesent atudy to avaluate the eflfectiveness
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of these procedures with regard to Euler
aolutions.

Tne elliptic grid generation system is deflined
by

3
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wnere the g®” are the elements of the
contravariant metric tensor:

Vo Ve (2)

These element are more convenlently expressed in
terzs of the elements of the covarlant metric
Lensdr, g..%

8.n =L, + T .0 = (3
o i =~ ¢

whlcen can be calculated directly. Thus
g™ = g, & “&1 &) g
1
(2,4,3) cyelic, (n,k,1) cyctic,

where g, the square of the Jacobian, is given by

g = detjig,, : =TI ( Tya X I ! (s

In these relatlons, r is the Cartesian
position vector of a grid point (£ = ix + Jy
xz), and the ¢* (1=1,2,3) are the three
transformed, curvilinear coordinates. The Pn are
the "control functions™ which serve to control the
spacing and orientation of the grid lines in the
fleld.

Negative values of the control function P
cause grid lines on which ¢7 is constant to move
in the direction of decreasing {". This feature
can be used to concentrate grid lines near other
grid lines and/or points or in certain regions of
pnysical space. However, a more automatic
procedure i{s to dete:mine tre contrcl functions so
as to project the boundary point spacing into the
field. The details are discussed in reference 3;
nowever, a brief explanation {s presented here.

Consider first a rectangie with equally spaced
points on the rorizontal sides but unegqual sjpacing
on the two vertical sides (Fig. 1). With no
control functions, L.e., Pn:O. Eq. (1) will
produce a grid that attempts to be equally spaced
in the {nterior of the region, (Fig. 2). A griad
of parallel lines for this configuration,
reflecting the unequal spacing on the boundarles
(Fig. 3), can qnly be produced from Eq. (1) witn
PZQO taking ¢' to vary on tne norizontal sides
and {© to vary on the vertical sides).

Tne proper values of Pz needed to accozylisn
s are deterzined by evaluating Eq. (1) one-
ensionallyv on the vertical sides, with tne
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With the J points on the vertical sides, and I
pcints on the horizontal sides, the control
function P, on the vertical sides then can be
evalua%ted (using a central difference technigue
for Eq. (€) ) froz the point distribution thereon
as

P{1.g) = - [yltl.p+1) - 2yv(1
Flytipany -yt g-1)]

for 3:2,3,--,J-1, with an analogous equation witn
I for the first argument. The values of P, in tne
interior of the region then can be interpolated
froo values of PZ on the two vertical sides. A
sizilar evaluation of the other control function,
PX' on the two hor{zontal si{des frox

e (7}
1

produces a zero in the present case due to equal
spacing on these sides. In the case of unequal
spacing, the values of Py in the interior of the
region would be evaluated by interpolation between
the values on the two horizontal sides. With the
control functions evaluated in this manner, Eq.
(1) will produce a grid composed of parallel
straight lines for this boundary configuration,
thus reflecting the boundary point spacing into
the field (Fig. 3).

Now consider an O-type grid with two
concentric circular boundaries and equally spaced
points around the circles (Fig. 4). Because of
its inherent tendency to cause the grid lines to
move closer to convex boundaries, Eq. (1) with no
control functions will produce a grid with unequal
radial spacing of the circumferential lines (Fig.
5). In this case, evaluation of EqQ. (1) with the
polar coordinate transformation;

x{r.9) = r((z)cosﬁ
r.8) = r(t?) sine

yields the eguation

Foo= - 202 ¢ 12
:Tz—“ T (8)
Tnus, in order to produce a specified radial
distribution of lines, the control function P
must be evaluatgf froz EQ. (8) using the given
distridution r(! First, a radial cut {s cade
in the physical plane from the inner to the outer
circle. The circular region can now be unwrapped
to form a computational field that has {ts two
vertical sides corresponding to the cut between
tne two circular boundaries in the physical field
\F1g. 6). Therefore, with the speoified radial
distributicn placed on the two vertioal sides of
tne comnytational field, the oontrol function P,
can be evaluated from Eq. (8) on these sides as
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and a similar equation with 1 as the first
arguzent. Tne interfor values then can be
determined by interpolation between the two
vertical sides as before., Note that this amounts
to interpolation in the cilrcuzferential direction
{n tne physical plane. Again, equal spacing
around the circles produces a zero value of the
otner control function, ?1. In general, P, would
be evaluated on the twoc circles and interpolated
between the two horizontal sides in the
cocputational reglon, i.e,, between the two
circies in the physical field. Both tne radial
and 2!{rcumnferentfal interpolation schezes are
represented {n Figure T.

Tne second tert in Eq. (8) arises from the
curvature of the boundary, and the denozinator is
the iocal radius of curvature of the grid line
that {s to pass through the point where the
control function is being evaluated. Tnis term
acts to reduce the magnitude of the contrcl
function in order to allow for the natural
tendency of the grid lines to move toward convex
boundaries. Since the lines tend to concentrate
near the inner circle even with zero control
functions, the use of the first term alone in Eq.
(8), {in analogy with the flat boundary case,
t.e., £EQ. (6)), would produce a stronger
concentration of lines near the inner circle than
was intended.

Finally, consider a C-type grid (Fig. 8), with
the resulting computational region (Fig. 9). 1If
now the control function P, {s evaluated on lines
1-2 and 4-3 in the phyaica% field from Eq. (6),
and the interior values are interpolated between
the two vertical sides in the computational field,
the resulting contrel function, while serving well
over the right portion of the physical field, will
be too strong over the ilnner body where the line
curvature is not zero. The use of Eq. (8) on the
lines 1-Z2 and 4-3 would be no better since the r
ir. the denozinator {3 to be interpreted as the
local radius of curvature of the crossing line and
nence i3 infinite on these lines so that the
second term in Eq. (8) vantishes.

This s{tuation can be remedied by
interpolating for the local radius of curvature in
Eq. (B) between the inner and outer boundaries in
tne pnysical fleld, l.e., between the horiiontal
sides _in the computational region. However, since
tne {< derivatives in Eq. 8) must still be
evaiuated on the vertical sides it !s necessary to
sezarate Eq. .2 into three pleces:

) ( Trg,2 ) L bey 2,
) o (10)

Now the two gquantitles in parentheses are
evaliited on the vertical sides of the
syzritational regicn, while the ralius of
c:mvature s evaluateds on the two horizontal
siies. The cantrol function {n the fnterior tnen

Ny i g"‘:»‘

! not
e due Jon

i

i3 evaluated by interpolating the quantities (n
parentheses between the vertical sides,
interpolating tne radius of curvature between tne
norizantal sides, and then evaluating P, froz Eg.
(10) using these interpolated values. Note that
this procedure supplies a finite radius of
curvature over the {nner body, thus reducing the
control function appropriately in this region.

A problez arises, however, when the radius of
curvature (r) i{s of opposite sign on the two
boundaries between which {t {s interpolated (Fig.
10), since then the interpolation .ill produce a
zero value at some point in between, and at such a
point the second term of Eq. (10) is infinite.
This problez can be correctec by interpolating
V/r, instead of r. This azounts to writing Eq.
{10} as

e (PR ) e (2
2T N e T
(GRS

and interpolating the curvature {(i/r), rather than
the radius of curvature (r).

Although the exact equations for the general
case are more complicated, the conirol function,
Pn. may still consist of spacing terms along a
boundary and teras arising from the local
curvature of crossing lines. This amounts to
interpolating the spacing terms between the four
sides on which (® varies (Fig. 11) and
interpolating the local curvature terms between
the two sides on which P 1s constant (Fig. 12).
The question that then arises is whether the
transfinite interpolation for the spacing term and
the local curvature term should use linear
blending functions or blending functions based on
physical arc length. The former (linear) amounts
to interpolating in terms of the transformed
curvilinear coordinate, while the latter (arc)
amounts to interpolation with respect to the
physical distance, For example, on the grid
{llustrated in Fig. 13, interpolation with
"linear” lLlending functions would produce a value
on line 3 that {s the average of that on lines 1
and 5, while with "arc" blending functions the
value produced on line 3 would be closer to this
on line 1.

Flow Solver

For this {nvestigation a three-dimensional
time-depen?&nt Euler approximaticn, developed by
Whitfielc, was ezployed using finite volume
discretization and a second-order {zplicit scheaxe
to solve the flux-vector-split form of the
equations with local time stepping. This scheze
solves 5x5 block bi-diago?§1 systezs ol equaticns
using Doolittle's method. Characteristic
.ariable boundary conditions are used in the
farfield and at i{mpermeable surfaces. %o
adcitional artificial dissipation s addel, and
tne scrnieme {s conditionally stable in three
dimersions, Optimum CFL numbers appear to be
between 12.5 tc 15,

Configuration and Flow Ccnditions

Trrea generic weapcn/store oinligy
exazined usi~g tne various griciing jpre
grid types. Trne first geomelry (lanfiguraticn V)
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consists of a 10/3 D cylindrical centerbody and
5/3 D tangent oglive forebody and afterbody'“ (Fig.
14) and 1s modeled using an €1x15x10, O-type z-id.
This configuration {s used to represent a typical
fuel tank carried on current alrcraft and is
exazined at two transonic Mach nusbers, 0.85 ang
1.20, both at zero degrees angle-of-attack. Tne
second geometry (C%?riguratlon 2) consists of a
10° cone-cylinder'” (Fig. !5) and 1s modeled using
an BIx15x10, H-type grid. Tnis geometry {s used
to represent a generic penetrator and is exazined
at M_:0.999 and 0% Tk third geometry
(Configuration 3) consists of a 1.5 D tangent
ogive t?gebody and a 20 D cylindrical aft

section (Fig. 16) and {s modeled by a 65x20x10,
C-type grid. This configuration is used to model
a high-fineness ratio (21.5:1) body-alone missile
alrfraze, and is analyzed in the subsonic range at
M_:0.70 at 2 :5.07° and in the transonic range at M
=0.90 at o :00.

Analysis

Two investigations examined control function
interpolation techniques. The first analysis
involved employing both the "linear™ and "arc¢®
tecnniques for interpolating the spacing terz in
the control function. The second study
investigates the use of the "linear” and "arc"
techniques with respect to the radius of curvature
(r) and curvature (1/r) interpolations for the
local curvature terz 4{n the control function.

Spacing Term

Figure 17 shows the effects of the
interpolation for the spacing term using the
“linear” and "arc” techniques for the C-type grid
on Configuration 3. Using the "linear"
interpolation (Fig. 17a), the grid lines better
reflect the concentrated point distribution in the
shoulder region of the body, thereby aligning the
grid with the shock pattern that develops near
that location. Figure 17b shows a close-up view
of the grid near the shoulder region of the body.
Using the "arc” interpolation, the grid lines are
slanted far forward and hence, do not align
themsel ves with the shock pattern (Figs. 17c,d).
Figure 18a shows the effects these two grids have
on the Euler solution. Figure 18b gives an
expanded view of the shock region. For the
"linear” grid, a typical second-order solution to
the Euler equations at M_ =0.90 and a=0° is
obtained. One expects the computed shock strength
to be slightly higher than the experimental data
at the peak of the expansion and, although not
desirable, second-order "ringing" (dispersive
effects) {s expected downwind of the shock for
this upwind scheme. The “"linear" grid solution
shown has expanded at the shock more than one
expects, but does reflect the characteristics cf
the inviscid solver. The "arc" grid solution,
although more closely matching the experimental
data, does not reflect the qualities of an
accurate, seconcd-order, inviscid solution. Figure
'3 snows the effects these two grids have on the
Euler solutfon at M, =0.70 and a =5.07°% The
".inear"” gr-{d solution, once again, reflects a
typical second-order, inviscid solution by over
predicting the expansion and, since no shock was
forzed, exhibdits no dispersive effeots (ringing),
Tne "arc" goid solut{on shows sisilar results in

T T——p—y
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which the expansion is overpredicted and no
dispersive effects are witnessed downwind of the
expansion.

Rlthough nct shown, similar results are
obtained for Configuration 1 (O-type grid) at both
flow conditions and Configuration 2 (H-type grid)
at M =0.999 and a:0% These results again show
that the "linear” interpolation tecnnique for the
spacing terz reflecty a more accurate second-
order, inviscid solution for all cases.

Local Curvature Term

The first part of this analysis exaxzines the
effects of {nterpolating for the radius of
curvature (r) using both the "linear" and "arc"
techniques to obtain the local curvature term in
the control function. Figure 20 shows the effects
of these two techniques for the DO-type grid on
Configuration 1. Using the "arc™ technique, a
better concentration of grid lines 1s obtained
close to the body (Fig. 20a,b). Using the
"linear” technique, a comparable grid is produced;
however, the grid is not as concentrated near the
body (Fig. 20c,d). Figure 21 shows the eflfects
these two grids have on the Euler solution at M.
21.20 and ¢ z0° The "arc" grid, with its greater
concentration of lines near the body, resolves the
flowfield more accurately in the stagnation
region. Physically reasonable results are
obtained using the "arc" grid in which the first
cell on the nose yields a higher pressure
coefficient (C,) than does the second or third
cell (Fig. 21b%. The "linear™ grid yields
unreasonable results in which the third cell back
on the nose ylelds a higher C_, than does the first
or second cell (Fig. 21b). thure 22 shows the
effects these two grids have on the Euler solution
at M, =0.85 and «z0°, Both grids yield physically
reasonable, although markedly different, results
at these flow conditions. -

Similar results are obtained for Configuration
2 at Mo =0.999 and @ =0° and for Configuration 3 at
both flow conditions. These results show that
interpolating for the radius of curvature (r)
using the "arc" technique to obtain the curvature
term in the control function ylelds a more
physically reasonable solution for all cases.

Due to the fact that complications can arise
when i{nterpolating for the radius of curvature
(r), a seocond examination is performed to study
the effects of interpolating for the curvature
(1/r) using both the "linear" and "arc"
techniques. Figure 23 shows the effects of using
the "arc" technique on the O-type and C-type
grids. This technique yields an undesirable grid
in which the lines are highly skewed and, hence,
{3 not useful to the Euler sclver. Therefore,
when {nterpolating for the curvature (1/r) only
the "linear" technlique should be used.

Control Function

Depending on the geometry, there are two
optimut approaches for obtaining the control
function, P.. The first method {s to emplcy the
"linear™ tecnnique to obtain the apacing terz and,
whan the two opposing boundaries have ourvature of
the saze sigh, to {nterpolste for the radius of




curvature (r) using the "arc" technique to obtain
the local curvature term (Method 1). The second
method (s to, agaln, employ the "linear" tecnnique
to obtain the gpacing term and, when the two
opposing boundaries have curvature of the opposite
sign, to interpolate for the curvature using the
"linear” technique to obtain the local curvature

ZKutler, P., "A Perspective of Tneoretical and
Applied Computational Fluid Dynamics,” AIAA Pager
83-0037, Reno, Nev., Jan. 1983,

3Thompson, J.F., Warsi, Z.U.A. and Mastin C.W.,
Nuzerical Grid Generation: Foundations and
Applications: Horth-Holland 198&5.

term (Method 2).

These two methods yield similar grids and a
thorough comparison shows that both methods give
approximate.y the same Euler solutions. Figure 24
shows the effects of these two methods on
Configuration 1 (O-type grid) at M_=1.20 and a :0°,
Tne results are essentlally the same except in the
stagnation region where Method 2 (spacing:
"linear", local curvature: curvature - "linear")
does not concentrate the grid lines as close to
the body an3d; nence, does not approprlately
resolve the flowfleld (Fig. 24b). Figure 25 snows
the effects of these two methqods on Configuration
2 (H-type grid) at M, =0.999 at a =0°. These
results snhow that both methods yleld essentially
identical solutions. Figure 26 shows the effects
of these two methods on Configuration 3 (C-type
grid) at M. =0.90 and n =0°. Again, these results
show that both methods yleld the same second-
order, inviscid solution.

As can be seen by a comparison of Figures 20
and 23 and the results in Figure 24, it is
advisadle to interpolate for the radius of
curvature (r), rather than the curvature (1/r), to
odbtain the local curvature term in the control
function when the curvature has the same sign on
the two opposing boundaries. In fact,
interpolating for the curvature (1/r) does not
produce the exact form given by Eq. (8) for the
simple case of two concentric circles,

Conclusions and Recommendatidns

This study has demonstrated the viability of
automatic aetermination of the control function
frow the boundary point distributions using
separate interpolation of the terms arising from
spacing and those arising from local curvature.
Tne following is recommended as the optimuz
approach for obtaining the control function in the
elliptic grid generation system (Eq. 1). For the
spacing ter=z, the "linear” blending approach
should be exployed globally. For the local
curvature term, global interpolation for the
radius of curvature (r) using the "arc" tecanique
should be empioyed. However, when the two
opposing boundaries have curvature of the opposite
sign, local interpolation for the curvature (1/r)
using tne "linear" tecnnique should be used.

It has deen shown throughout this analysis
trnat various grld generation techniques employed
within the code do have a substantial {mpact on
tre solution and, when care {s taken to genejate
tne grid in the proper manner, these grids help
tae flow solver to yleld accurate second-order,
{nvis>ic solutions.
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